Silylhydroxylamines as Reagents for High-yield RCOCl→RNCO Conversions

By FRANK D. KING,* STEPHEN PIKE, and DAVID R. M. WALTON* (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Silylated hydroxamic acids, RCON(OSiMė₃)-SiMe₃, readily prepared from acid chlorides and Me₃-SiONHSiMe₃ or Me₃SiON(SiMe₃)₂, fragment at 410— 430 K to give the corresponding isocyanates, RNCO, in high yield.

COMPOUNDS of type (1) are known to decompose upon heating to give low-valent species such as carbenes¹ (M = C,

 $\begin{array}{c} \mathrm{R}_{n}^{1}\mathrm{M}(\mathrm{OR}^{2})\mathrm{SiMe}_{3} \rightarrow \mathrm{R}_{n}^{1}\mathrm{M}\colon + \mathrm{Me}_{3}\mathrm{SiOR}^{2} \\ (1) \end{array}$

n = 2), silylenes² (M = Si, n = 2), and nitrenes³ (M = N, n = 1). We now describe a preparatively useful example of the latter which is reminiscent of the Lössen rearrangement.⁴

Treatment of acid chlorides with (i) $Me_3SiONHSiMe_3^5$ and Et_3N , (ii) $Me_3SiONLiSiMe_3^{\dagger}$ or, most usefully, (iii) $Me_3SiON-(SiMe_3)_2^5$ results in good yields (> 75%) of silylated hydroxamic acids, $\ddagger RCON(OSiMe_3)SiMe_3$ (2), which, if required, may be isolated by low-pressure distillation. At 410–430 K, in an inert solvent such as mesitylene, compounds (2) fragment cleanly and rapidly to give $(Me_3Si)_2O$ together with the corresponding isocyanate, \$ RNCO, in virtually quantitative yields, as shown in the Scheme.

Each of the initial steps has its particular merit; for example, (ii) is useful for low-boiling acid chlorides: conversion of propioloyl chloride in this context provides a means for the first authentic synthesis of isocyanatoethyne.¶

(i) Me₃SiONHSiMe₃ + Et₃N (excess), light petroleum (b.p. 40—60 °C), 2 h, 293 K, R = Me, Bu^t, XC₆H₄ (X = m- or p-OMe, p-Me, or p-NO₂); (ii) Me₃SiONLiSiMe₃, ether, 233 K, 15 min, R = HC=C; (iii) Me₃SiON(SiMe₃), mesitylene, 353 K, 30 min (Me₃SiCl is distilled continuously from the reaction mixture), R = Ph or *E*-PhCH=CH.

Method (iii) is attractive in that the whole sequence: $RCOCl \rightarrow RCON(OSiMe_3)SiMe_3 \rightarrow RNCO$ can be carried out in homogeneous solution without interruption. However, until Me_3SiONHSiMe_3 and Me_3SiON(SiMe_3)_2 become available commercially, method (i) may be preferred because $Me_3SiONHSiMe_3$ is prepared directly from Me_3SiCl and hydroxylamine,⁵ whereas the synthesis of Me_3SiON(SiMe_3)_2 requires a further metallation step.⁵

The conversion applies equally well to the analogous sulphur compounds; thus treatment of PhCSCl with $Me_3SiON(SiMe_3)_2$ gives, initially, PhCSN($OSiMe_3)SiMe_3$, which upon thermolysis gives the isothiocyanate, PhNCS, in high yield.

The decomposition of $PhCON(OSiMe_3)SiMe_3$ in mesitylene in the 383-433 K range is cleanly first order with respect to

[†] The low temperature *must* be maintained during the coupling step, otherwise $Me_3SiONLiSiMe_3$ rearranges to $(Me_3Si)_2NOLi$ resulting in $RCO_2N(SiMe_3)_2$ products; see R. West, P. Boudjouk, and A. Matuszko, J. Amer. Chem. Soc., 1969, 91, 5184.

 \ddagger If desired, the free hydroxamic acids, RCONHOH, may be liberated quantitatively by treating the silvlated species (2) with MeOH at room temperature.

§ All compounds were characterised by standard analytical and spectroscopic techniques [notably ν (NCO), ca. 2260 cm⁻¹].

¶ Experiments by Mr. T. Cooper: a preliminary microwave spectral analysis shows the unstable product, HC=CNCO to be a planar V-shaped molecule with \angle CNC = ca. 150°.

substrate up to ca. 80% of reaction and the derived thermodynamic parameters, ΔH^{\ddagger} 138 kJ mol⁻¹, ΔS^{\ddagger} – 9 J K⁻¹ mol⁻¹, are close to those determined for the thermolysis of PhN(OSiMe₃)SiMe₃,³ viz. ΔH^{\ddagger} 116 kJ mol⁻¹, ΔS^{\ddagger} -16 J K⁻¹ mol⁻¹.

Preliminary trapping experiments designed to establish the intermediacy or otherwise of an aroylnitrene as an initial fragmentation product were somewhat inconclusive. Thus heating PhCON(OSiMe₃)SiMe₃ for 6 h at 355 K in cyclohexene (ten-fold excess) gave $PhCONH_2$ (5-10%), PhNCO [ca. 80% conversion based upon the quantity (50%) of substrate decomposed], a small amount of unidentifiable

polymer, but no aziridines, such as were isolated, albeit in low yield (2%), in the decomposition of PhN(OSiMe₃)- ${\rm SiMe}_{3}.^{3}~{\rm It}$ is noteworthy that thermolysis of ${\rm Bu}^{t}{\rm CON}_{3}$ (Curtius reaction) in an excess of cyclohexene gave exclusively Bu^tNCO (100%) although in this instance, photolysis experiments yielded rearranged adducts of cyclohexene, commensurate with nitrene formation.⁶

We thank the S.R.C. for maintainance awards to F.D.K. and S.P.

(Received, 23rd January 1978; Com. 068.)

¹ W. H. Atwell, D. R. Weyenberg, and J. G. Uhlmann, J. Amer. Chem. Soc., 1969, 91, 2025; A. G. Brook and P. J. Dillon, Canad. J.

Chem., 1969, 47, 4347; for analogous rearrangements see A. G. Brook, Accounts Chem. Res., 1974, 7, 77. ² W. H. Atwell and D. R. Weyenberg, J. Amer. Chem. Soc., 1968, 90, 3438; J. Organometallic Chem., 1966, 5, 594; T. J. Barton and

M. Juvet, Tetrahedron Letters, 1975, 3893. ⁸ F. P. Tsui, T. M. Vogel, and G. Zon, J. Amer. Chem. Soc., 1974, 96, 7144; F. P. Tsui, Y. H. Chang, T. M. Vogel, and G. Zon,

J. Org. Chem., 1976, 41, 3381. ⁴ W. Lössen, Annalen, 1877, 186, 1; C. K. Ingold, 'Structure and Mechanism in Organic Chemistry,' 2nd edn., Longmans, London,

1969, p. 748. ⁵ U. Wannagat and O. Smrekar, Monatsh. Chem., 1969, 100, 750; R. West and P. Boudjouk, J. Amer. Chem. Soc., 1973, 95, 3987;

⁶ W. Lwowski and G. T. Tisue, J. Amer. Chem. Soc., 1965, 87, 4011.